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RELATIVE EFFECTS OF HABITAT LOSS AND FRAGMENTATION ON 
POPULATION EXTINCTION 
LENORE FAHRIG, Ottawa-Carleton Institute of Biology, Carleton University, ON K1S 5B6, Canada 

Abstract: In their review of the recent "explosion of spatially explicit theory" in ecology, Kareiva and Wen- 
nergren (1995) suggest a number of emerging principles for species conservation. One of these principles is 
that how habitats are arranged in space can mitigate the risks of species extinctions from habitat loss. I tested 
this by estimating the relative importance of habitat loss and habitat spatial pattern (fragmentation) on popu- 
lation extinction, using a simple, spatially explicit simulation model. Results indicate that the effects of habitat 
loss far outweigh the effects of habitat fragmentation. I therefore suggest that, in fact, details of how habitats 
are arranged cannot usually mitigate the risks of habitat loss. Conservation efforts should be aimed foremost 
at stopping habitat loss and at habitat restoration. 

J. WILDL. MANAGE. 61(3):603-610 

Key words: conservation biology, extinction, fragmentation, habitat ecology, habitat fragmentation, habitat 
loss, habitat restoration, simulation, spatial model, species conservation. 

Destruction and fragmentation (literally 
"breaking apart") of natural habitats are the 2 
most important factors in the current species 
extinction event (Groombridge 1992). Loss and 

fragmentation of habitat result in reduced pop- 
ulation sizes, which increases the probability of 
extinction by demographic and/or environmen- 
tal stochasticity (Burkey 1995). However, effects 
of habitat amount and fragmentation are con- 
founded in many studies that claim to show an 
effect of fragmentation. This arises through fre- 

quent use of the term "fragmentation" to mean 

simultaneously both loss and fragmentation of 
habitats (Diffendorfer et al. 1995, Holt et al. 
1995, Robinson et al. 1995, Schumaker 1996). 

Furthermore, negative effects of decreasing 
size and increasing isolation of habitat patches 
often are interpreted as fragmentation effects 
(Dodd 1990, Robinson et al. 1992, van Apel- 
doom et al. 1992, Celada et al. 1994, Hunter et 
al. 1995), when in fact they may be interpreted 
more correctly as negative effects of large-scale 
habitat loss. If habitat loss results in a constant 
number of smaller patches, then patch size ef- 
fects are due to habitat loss alone. If whole 

patches are removed from the landscape, then 
isolation of remaining patches increases but 

fragmentation per se is actually decreased be- 
cause there are fewer patches (Ripple et al. 
1991); in this case isolation effects are due to 
habitat loss alone. Only when the number of 

patches increases by the breaking apart of hab- 
itats do we find that both habitat loss and frag- 
mentation per se are involved in the decreasing 

size and increasing isolation of habitat patches 
(Fig. 1). 

When habitat amount is held constant or con- 
trolled for, fragmentation generally has either 
no effect (Middleton and Merriam 1983, Hamel 
et al. 1993) or a negative effect on population 
survival (Burkey 1989, 1995; Atmar and Patter- 
son 1993, Adler and Nuernberger 1994, Andr6n 
1994, Irlandi 1994, Dytham 1995). However, 
because habitat loss and fragmentation typically 
occur together, it is not clear which process has 
the larger effect on extinction. If fragmentation 
is important, then within some limits it should 
be possible to mitigate effects of habitat loss by 
ensuring that remaining habitat is not frag- 
mented. On the other hand, if the effects of 

fragmentation are trivial in comparison to the 
effects of loss, then the assumption that loss can 
be mitigated by reduced fragmentation (Kareiva 
and Wennergren 1996) has potentially danger- 
ous consequences for conservation (Danielson 
1994). The goal of this study therefore was to 
assess the relative importance of habitat loss 
and fragmentation on population extinction. 

This work was supported by a Natural Sci- 
ences and Engineering Research Council of 
Canada grant to the author. C. Cui assisted with 

computer programming. I am grateful to J. Faa- 

borg and J. Meyer for reviews of the manu- 

script. 

METHODS 
I constructed a spatially-explicit simulation 

model (Figs. 2-5), in which parameters deter- 
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y 1 Habitat Loss 

Habitat Loss 
and Fragmentation 

Fig. 1. Effects of habitat loss and fragmentation on patch size 
and isolation. A. If habitat loss results in a constant number of 
smaller patches, then patch size effects are due to habitat loss 
alone. B. If whole patches are removed from the landscape, 
then isolation of remaining patches increases but fragmenta- 
tion per se is actually decreased since there are fewer patch- 
es; in this case isolation effects are due to habitat loss alone. 
C. When the number of patches increases by the breaking 
apart of habitat, both habitat loss and fragmentation per se are 
involved in decreasing size and increasing isolation of habitat 
patches. 

mining amount of breeding habitat (COVER), 
and fragmentation of breeding habitat (FRAG) 
can be varied independently. The model in- 
cludes additional parameters that determine the 
life history and movement attributes of a hy- 
pothetical organism living in the simulated 

landscape. The model is stochastic and individ- 
ual-based. Space is represented in a 2-dimen- 
sional rectangular landscape of "cells"; the land- 
scape size in the simulations is 900 cells (30 x 
30). There are 2 kinds of cells: breeding habitat 
and nonbreeding habitat; reproduction can oc- 
cur only in breeding habitat. 

Fragmentation of breeding habitat takes on a 
value between (but not including) 0 and 1, 
where low values result in low fragmentation 
and high values result in high fragmentation. To 
initialize the spatial pattern of breeding habitat 
on the landscape at the beginning of a simula- 
tion run (Fig. 3), I begin with no breeding hab- 
itat and then repeat the following steps until the 

proportion of the grid in breeding habitat has 
reached COVER: (1) a cell is selected at ran- 

Main Routine 

Subroutine 1: initialize habitat spatial pattern 

first time step 

0 first cell 

- first individual 

breeding habitat cell? 
Subroutine 2: mortality, movement, Subroutine 2: mortality, 

reproduction movement 

ne 

individualYes 
next cell Nolast cell ? 

Yes 

next time stepime step=500 or Yes 
Subroutine 3: overabundance mortalllty 

Fig. 2. Flow diagram of the main routine in the simulation 
model. 

dom; (2) a random number between 0 and 1 is 
selected; (3) if the selected cell has a neighbor- 
ing cell that has been assigned as breeding hab- 
itat or if the random number is less than FRAG, 

select random cell 

Yes 
cell is already SubrouInitialize 1:Habitat 
breeding habitat? Initialize Habitat 

No Spatial Pattern 

select random number (0-1) 

No 

or a neighbouring cell 

breeding habitat? 
Yes 

assign current cell 
as breeding habitat 

No 

total no. breeding e return to 
habitat cells = COVER? main routine 

Fig. 3. Flow diagram of the model subroutine for initialization 
of the spatial pattern of breeding habitat. 
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Fig. 4. Flow diagram of the model subroutine for individual mortality, movement, and reproduction. The shaded portion (repro- 
duction) is implemented only if the individual is in breeding habitat. Movement probabilities per time step are 0.5 and 1.0 in 
breeding and nonbreeding habitat. Mortality probabilities per time step are 0.05 and 0.5 in breeding and nonbreeding habitat. 

then the selected cell is assigned as breeding 
habitat. This algorithm for fragmentation is es- 

sentially the same as correlated or interacting 
percolation models (Anderson and Family 1988, 
Plotnik and Gardner 1993). The spatial pattern 

first cell 

next cell 

add and subtract individuals 
based on results of subroutine 2 

Subroutine 3: 
Overabundance 

No number of Yes Mortality 
individuals > 10? 

randomly remove 
individuals until 
number=10 

No last cell? Yes return to main routine 

Fig. 5. Flow diagram of the model subroutine for overabun- 
dance mortality. 

of breeding habitat is then constant throughout 
the simulation run. 

For the current simulations, life history and 
movement parameters were set at values re- 

sulting in the largest possible effect of FRAG 
on extinction time, as determined in prelimi- 
nary runs (Fig. 6). Therefore, the results of this 

study give the maximum importance of FRAG 
relative to COVER. In retrospect, this pro- 
duced the most conservative possible results be- 
cause FRAG was found to be much less impor- 
tant than COVER in affecting extinction prob- 
ability and extinction time. 

Individuals may die, reproduce, and/or move 
within each time step; the order of these events 
is randomized for each individual in each time 

step (Fig. 4). Probabilities of reproduction and 
movement are density-independent. Probability 
of death is density-independent as long as the 

population is below the maximum capacity of a 
cell (10 in the current simulations). However, if 
the cell population exceeds the maximum, in- 
dividuals are killed at random to reduce the 

population to the maximum capacity (Fig. 5). 
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Fig. 6. Illustration of maximum effect of breeding habitat frag- 
mentation (FRAG) on extinction probability, based on 200 sim- 
ulation runs. All model parameter values (except FRAG) were 
held constant among runs, at values that maximize the effect 
of FRAG; all simulated landscapes contained 10% breeding 
habitat. Extinction probabilities were estimated as the fraction 
of runs extinct, calculated within FRAG ranges of 0.1; proba- 
bilities are plotted at range midpoints. Increasing fragmentation 
of breeding habitat significantly increases the probability of ex- 
tinction because it increases the ratio of habitat edge to inte- 
rior. This increases the probability that individuals move into 
nonbreeding habitat, where survival rate is lower. Population 
growth is therefore lowered by a reduction in both reproductive 
and survival rates. 

Reproduction occurs only in breeding habitat 
and is determined by the probability of repro- 
duction per time step per individual (0.5 in the 
current runs) and the number of offspring per 
reproduction event (1 in the current runs). 
Probability of mortality is much lower in breed- 

ing habitat than in nonbreeding habitat (0.05 
and 0.5/time step in the current simulations). 

Individuals move with some probability each 
time step. Movement probability is lower if the 
individual is in a breeding habitat cell than a 

nonbreeding cell, on the assumption that indi- 
viduals in nonbreeding habitat "want" to move 
to breeding habitat; movement probabilities in 
the current simulations were 0.5 and 1.0 for 

breeding and nonbreeding habitat. Movement 
direction is taken as a random angle. Movement 
distance is also random, but is limited to a max- 
imum of 4 cells per time step in the current 
simulations. From the point of view of moving 
individuals, the landscape is "wrapped"; an in- 
dividual that crosses the edge of the landscape 
continues in the same direction on the opposite 
edge (Haefner et al. 1991). Note that the rate 
of emigration from patches increases with de- 
creasing patch size in this model because indi- 
viduals in smaller patches have a higher prob- 
ability of crossing the patch edge, than do in- 
dividuals in larger patches, for a given move- 
ment distance. 

Two thousand simulation runs were conduct- 

ed. For each run, values were randomly select- 
ed for FRAG (range 0-1) and COVER (range 
0-1). Each simulation began with 500 individ- 
uals distributed randomly over the landscape 
and was conducted for 500 time steps or until 
the population went extinct, whichever came 
first. The 500 time step limit was based on a 
series of preliminary runs using a maximum run 

period of 2,000 time steps, in which I found 
that any population that survived for the initial 
500 time steps survived for the full 2,000 steps. 
For each run I recorded whether or not the 

population went extinct, and the extinction time 
for those that went extinct. The results were 

analyzed with multiple logistic regression anal- 

ysis and multiple regression analysis (SAS Inst. 
Inc. 1990). 

RESULTS 
Amount of breeding habitat had a much 

greater effect than FRAG on extinction proba- 
bility (Table lA; Figs. 7A, 8A). In fact, in all 
simulation runs with COVER >0.2, the popu- 
lation survived for the full 500 time steps (Fig. 
7A). Fragmentation effects are expected only 
when amount of habitat is less than about 10- 
30% of the landscape (Andrdn 1994). When I 
limited the dataset to the 417 runs with COV- 
ER less than 0.2, the results were almost iden- 
tical to the results when all 2,000 runs were in- 
cluded: the effect of COVER far outweighed 
the effect of FRAG on extinction probability 
(Table 1B, Figs. 7B, 8B). Note that the shape 
of the relation in Fig. 8B reflects the relation 
shown in Fig. 6 (where COVER = 0.1). How- 
ever, in Fig. 8B, extinction probability never 
reaches 1 because at all levels of FRAG there 
are some runs with relatively high COVER val- 
ues (near 0.2); these populations are highly like- 

ly to persist. 
I also conducted multiple regression analysis 

of extinction time on COVER and FRAG, using 
the 210 runs that went extinct within 500 time 

steps (Table IC; Figs. 7C, 8C). Again, COVER 
has a large effect on extinction time; no effect 
of FRAG was detected. 

DISCUSSION 
A possible criticism of the model is the rela- 

tively simplistic algorithm for simulation of 
movement behavior. However, the movement 
algorithm also produces a conservative result 
because more complicated movement assump- 
tions are likely to reduce the effect of fragmen- 
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Table 1. Analyses of simulation results. 

A. Multiple logistic regression analysis based on all 2,000 simulation runs. Response variable is 0/1 for extinct/not extinct within 500 simulation time 
steps. 

Source Deviance Prob. Type I error Parameter 

Intercept 59.5 0.0001 3.7 
Amount of breeding habitat 119.5 0.0001 -48.7 
Fragmentation of breeding habitat 18.7 0.0001 2.4 
B. Multiple logistic regression analysis based on the 417 simulation runs with amount of breeding habitat < 0.2. Response variable is 0/1 for extinct/ 
not extinct within 500 simulation time steps. 

Source Deviance Prob. Type I error Parameter 

Intercept 55.6 0.0001 3.6 
Amount of breeding habitat 109.4 0.0001 -47.8 
Fragmentation of breeding habitat 18.7 0.0001 2.4 
C. Multiple regression analysis based on the 210 simulation runs in which the populations went extinct within 500 simulation time steps. Response 
variable is survival time. 

Source t for H: par. = 0 Prob. Type I error Estimate 

Intercept 0.7 0.49 6.7 
Amount of breeding habitat 12.2 0.0001 1,191.8 
Fragmentation of breeding habitat -0.7 0.51 -9.4 

tation. If individuals follow movement corridors 
(Beier 1993, Bennett et al. 1994) or orient to- 
ward new breeding habitats from some distance 

(Fahrig and Paloheimo 1988), then fragmented 
breeding habitats are joined effectively into 

non-fragmented habitats, reducing the effect of 

fragmentation. Therefore, although the move- 
ment assumptions are unrealistic for many or- 

ganisms, they are conservative in the sense that 

they increase the likelihood of observing an ef- 
fect of fragmentation on extinction. 

Several theoretical studies have examined the 
effects of either habitat loss (Lande 1987, Law- 
ton et al. 1994, Tilman et al. 1994, Dytham 
1995, Hanski et al. 1996, Venier and Fahrig 
1996) or fragmentation (Adler and Nuernberger 
1994; others reviewed in Durrett and Levin 
1994). Bascompte and Sole (1996) included 
both habitat loss and fragmentation in a theo- 
retical study of factors determining extinction 
thresholds. However, to my knowledge this is 
the first theoretical investigation of the relative 

importance of habitat loss and fragmentation. 
An explicitly spatial approach was taken in order 
to separate these 2 effects (Bascompte and Sold 
1996). 

The simulation results suggest that habitat 
loss has a much larger effect than habitat frag- 
mentation per se on population extinction. 
While several empirical studies have examined 
effects of fragmentation under constant habitat 
amount (Middleton and Merriam 1983, Mc- 
Lellan et al. 1986, Hamel et al. 1993, Atmar and 
Patterson 1993, Irlandi 1994, Burkey 1995), I 

know of only one study that examined the in- 

dependent effects of both habitat loss and frag- 
mentation. McGarigal and McComb (1995) 
sampled vegetation and birds in 30 landscapes 
in Oregon, and developed measures of forest 

configuration (fragmentation) that were statis- 

tically independent from forest amount. When 

they examined the independent effects of hab- 
itat area and configuration on bird abundance, 
they found that "with the exception of a few 

'edge' species, variation in abundance among 
landscapes was more strongly related to changes 
in habitat area; habitat configuration was of sec- 

ondary importance." 
To apply the simulation results to real spe- 

cies, it is important to correctly define the spe- 
cies' habitat. For example, in the context of for- 
est loss and fragmentation, loss of habitat is 

greater than the loss of forest for forest interior 

species, and loss of habitat is less than the loss 
of forest for forest edge species (there even may 
be an increase in habitat amount for edge spe- 
cies; Fig. 9). In addition, some edge species, 
such as the brown-headed cowbird (Molothrus 
ater) have negative effects on habitat quality for 
other species (e.g., neotropical migrants) thus 

reducing or eliminating their reproductive suc- 
cess in forest edge (Robinson et al. 1995). This 
can be viewed as a loss of suitable habitats for 
those species. To identify the independent ef- 
fects of loss and fragmentation for edge or in- 
terior species, the landscape must be mapped 
in terms of the actual habitat of the species, and 
not simply as forest/nonforest. 
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Fig. 7. Relation between proportion of landscape in breeding 
habitat (COVER) and A. extinction probabilities based on all 
2,000 runs, B. extinction probabilities based on only the 417 
runs with amount of breeding habitat <0.2, and C. extinction 
time based on only the 210 runs that went extinct within the 
500 time step limit of the simulations. Extinction probabilities 
are estimated as the fraction of runs extinct, calculated within 
COVER ranges of 0.05 for plot A and 0.02 for plot B; proba- 
bilities are plotted at range midpoints. 

Also, for any species there is a lower limit to 
the size of a patch that can act as breeding hab- 
itat. As an extreme example, a single old-growth 
tree in the center of a large clearcut does not 

represent habitat for a bird requiring old- 

growth forest as breeding habitat. In the simu- 
lations here, the smallest spatial unit (1 cell) had 
a maximum capacity of 10 individuals. There- 
fore, the simulations were scaled such that the 
smallest possible unit represents useable breed- 

ing habitat. In applying the results to real spe- 
cies one should omit from the map patches of 
habitat that are smaller than the minimum for 
that species. 

The results suggest that when breeding hab- 
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Fig. 8. Relation between fragmentation of breeding habitat 
(FRAG) and A. extinction probabilities based on all 2,000 runs, 
B. extinction probabilities based on only the 417 runs with 
amount of breeding habitat <0.2, and C. extinction time based 
on only the 210 runs that went extinct within the 500 time step 
limit of the simulations. Extinction probabilities are estimated 
as the fraction of runs extinct, calculated within FRAG ranges 
of 0.05 for plot A and 0.01 for plot B; probabilities are plotted 
at range midpoints. 

itat covers more than 20% of the landscape, sur- 
vival is virtually ensured no matter how frag- 
mented the habitat is. The prediction of a 
threshold in habitat cover is consistent with oth- 
ers (Lande 1987, Lawton et al. 1994, Schneider 
and Yodzis 1994, Hanski et al. 1996). The exact 
value of the threshold will depend to some ex- 
tent on the demographic potential of the organ- 
ism and the absolute scale of the landscape. 
However, for large landscapes, the 20% rule is 

probably realistic. A 20% habitat threshold also 
has been predicted for survival of the northern 

spotted owl (Strix occidentalis caurina; Lam- 
berson et al. 1992). Of course many organisms, 
particularly habitat specialists, depend on hab- 
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30% forest loss 

0%loss of =50%loss of 

edge habitat 1 interior habitat 

Fig. 9. Effect of forest loss on habitat amount for forest edge 
vs. forest interior species. In this hypothetical example, loss of 
30% forest represents no loss of habitat for a forest edge spe- 
cies, but about 50% loss of habitat for a forest interior species. 

itat types that make up less than 20% of the 

pristine landscape before alterations by human 
activities. These organisms are likely to be par- 
ticularly vulnerable to habitat loss. 

This study suggests that in fact "details of 
how habitats are arranged" (Kareiva and Wen- 

nergren 1995) are unlikely to mitigate the risks 
of habitat loss. This result is robust because the 
default assumptions in the simulation model 
were selected to maximize the possible effect of 
habitat fragmentation. To significantly improve 
survival prospects of endangered species we 
must therefore stop habitat loss and increase 
efforts in habitat restoration. Current emphasis 
in conservation biology on habitat spatial pat- 
tern (e.g., Fahrig and Merriam 1994) may be 

misplaced. 
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